

Rapid communication

Antagonism of P2X receptors in guinea-pig vas deferens by diinosine pentaphosphate

Charles H.V. Hoyle a,*, Jesús Pintor b, Javier Gualix b, M. Teresa Miras-Portugal b

^a Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK

Received 3 July 1997; accepted 8 July 1997

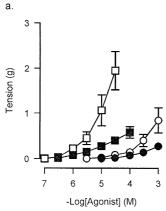
Abstract

Diinosine pentaphosphate (Ip_5I) antagonized contractions, mediated via P2X receptors, evoked by diadenosine pentaphosphate (Ap_5A) and ATP in the guinea-pig isolated vas deferens with pA_2 values of 6.4 ± 0.17 (10 d.f.) and 6.5 ± 0.10 (10 d.f.), respectively. Ip_5I (30 μ M) did not affect contractile responses evoked by noradrenaline. Ip_5I (up to 100 μ M) did not antagonize P2Y receptors in the guinea-pig taenia coli, nor P1 or P2 receptors in the guinea-pig left atrium. © 1997 Elsevier Science B.V.

Keywords: Diadenosine pentaphosphate; Diinosine pentaphosphate; ATP

 P^1,P^5 -bis(5'-inosyl)pentaphosphate (diinosine pentaphosphate, Ip_5I) is closely related to the P^1,P^n -bis(5'-adenosyl)oligophosphates (diadenosine polyphosphates), and was synthesised by deaminating the adenosine moieties of diadenosine pentaphosphate (Ap_5A) (Guranowski et al., 1995; Pintor et al., 1997). The identity and purity of Ip_5I were confirmed and assessed by high performance liquid chromatography (Pintor et al., 1997). Ip_5I has been shown to antagonize the dinucleotide receptor, which is specific for diadenosine polyphosphates, in synaptosomal preparations from the rat brain with an IC_{50} around 4 nM, and antagonises the P2 receptor in the same preparation with an IC_{50} around 30 μ M (Pintor et al., 1997).

Mid-segments of vasa deferentia (1.5 cm long) from guinea-pigs (420–485 g) were suspended vertically in 5 ml organ-baths, in Krebs solution (37°C), as were segments of taenia coli (1.5 cm long). The left atrium was prepared and paced as described previously (Hoyle et al., 1996). Mechanical activity was recorded isometrically.


In the vas deferens, at concentrations up to 100 μ M, Ip₅I had no contractile effect, while Ap₅A (0.1–30 μ M) and ATP (1.0–1000 μ M) evoked concentration-dependent contractions that are mediated via P2X receptors (MacKen-

zie et al., 1988; Hoyle et al., 1995). In the presence of Ip₅I $(0.1-10 \mu M)$ the concentration–response curves for the two agonists became displaced towards the right (Fig. 1a). Noradrenaline (0.3–100 µM) also evoked concentrationdependent contractions, but these were not significantly affected by Ip₅I at 30 μM. The Schild plot for Ap₅A (Fig. 1b) was significantly linear, with a slope of 0.84 ± 0.17 (not significantly different from unity, 10 d.f.), yielding a pA₂ value for Ip₅I of 6.4 ± 0.17 (10 d.f.). The corresponding plot for ATP was not significantly different from that for Ap₅A (two-way ANOVA) yielding a pA₂ value for Ip₅I of 6.5 ± 0.10 (10 d.f.). Thus Ip₅I appears to be a surmountable antagonist with a submicromolar IC₅₀. These $pA_{\scriptscriptstyle\,7}$ values compare with pIC_{50} values of 8.4 and 4.6 against Ap₅A and ATP in rat brain synaptosomes (Pintor et al., 1997). Whereas this rat brain preparation has two distinct receptors, one for diadenosine polyphosphates and one for ATP and related mononucleotides (Pintor and Miras-Portugal, 1994, 1995), the guinea-pig vas deferens does not appear to do so.

In the guinea-pig taenia coli, contracted by carbachol (50 nM) to achieve a standard level of tone, Ap_5A and ATP at concentrations that caused approximately 50% relaxation (mediated via P2Y receptors), were not significantly affected by Ip_5I (30 μ M) (P < 0.05, paired t-tests before and after 30 min incubation, n = 4). In the guineapig driven left atrium, where Ap_5A and ATP cause a negative inotropy mediated via P1 receptors (Hoyle et al.,

^b Department of Biochemistry, Faculty of Veterinary Sciences, Complutense University of Madrid, 28040 Madrid, Spain

^{*} Corresponding author. Tel.: (44-171) 419-3340; Fax: (44-171) 380-7349; e-mail: c.hoyle@ucl.ac.uk

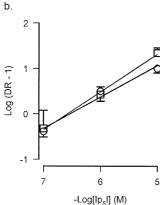


Fig. 1. Antagonism of diadenosine pentaphosphate (Ap_5A) and ATP by diinosine pentaphosphate (Ip_5I) in the guinea-pig isolated vas deferens. (a) Concentration–response relationships for Ap_5A (open squares) and ATP (open circles) in the absence of Ip_5I , and in the presence of Ip_5I (10 μ M, corresponding closed symbols). (b) Schild plots Ip_5I against Ap_5A (open squares) and ATP (open circles). Lines are calculated linear regressions. Points show mean \pm S.E., unless occluded by symbol. All points n=4.

1996), Ip_5I up to 100 μ M also had no effect (P < 0.05, paired t-tests before and after 30 min incubation, n = 4). Also in the left atrium, in the presence of 8-p-sulphophenyltheophylline (100 μ M), Ap_5A (100 μ M) evokes positive inotropic responses, via an ill-defined P2

receptor (Hoyle et al., 1996). These were also unaffected by Ip_5I (100 μ M) (P < 0.05, paired t-tests before and after 30 min incubation, n = 4).

In conclusion, Ip_5I is a selective antagonist of the P2X receptor in the guinea-pig vas deferens without apparent antagonistic activity at either P1 or P2Y receptors. It is suggested that Ip_5I represents a new class of P_2 -purinoceptor antagonist, and that it may prove to be a valuable starting point in the development of novel antagonists.

Acknowledgements

The authors gratefully acknowledge the financial support of the Areces Foundation and Grant number PL950676 from EU Biomed 2.

References

Guranowski, A.E., Starzynska, E., Günther Sillero, M.A., Sillero, A., 1995. Conversion of adenosine(5")oligophospho(5")adenosines into inosine(5")oligophospho(5")inosines by non-specific adenylate deaminase from the snail *Helix pomatia*. Biochim. Biophys. Acta 1243, 78.

Hoyle, C.H.V., Posterino, A., Burnstock, G., 1995. Pre- and postjunctional effects of diadenosine polyphosphates in the guinea-pig vas deferens. J. Pharm. Pharmacol. 47, 926.

Hoyle, C.H.V., Ziganshin, A.U., Pintor, J., Burnstock, G., 1996. The activation of P₁- and P₂-purinocpetors in the guinea-pig left atrium by diadenosine polyphosphates. Br. J. Pharmacol. 118, 1294.

MacKenzie, I., Kirkpatrick, K.A., Burnstock, G., 1988. Comparative study of the action of Ap_5A and α,β -methylene ATP on non-adrenergic, non-cholinergic neurogenic excitation in the guinea-pig vas deferens. Br. J. Pharmacol. 94, 699.

Pintor, J., Miras-Portugal, M.T., 1994. P₂ purinoceptors for diadenosine polyphosphates in the nervous system. Gen. Pharmacol. 26, 229.

Pintor, J., Miras-Portugal, M.T., 1995. A novel receptor for diadenosine polyphosphates coupled to calcium increase in rat brain synaptosomes. Br. J. Pharmacol. 115, 895.

Pintor, J., Gualix, J., Miras-Portugal, M.T., 1997. Diinosine polyphosphates, a group of dinucleotides with antagonistic effects on diadenosine polyphosphate receptor. Mol. Pharmacol. 51, 277.